Noether’s theorem for fractional variational problems of variable order
نویسندگان
چکیده
منابع مشابه
Variational formulation of problems involving fractional order differential operators
In this work, we consider boundary value problems involving Caputo and Riemann-Liouville fractional derivatives of order α ∈ (1, 2) on the unit interval (0, 1). These fractional derivatives lead to non-symmetric boundary value problems, which are investigated from a variational point of view. The variational problem for the Riemann-Liouville case is coercive on the space H α/2 0 (0, 1) but the ...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملOrder-type existence theorem for second order nonlocal problems at resonance
This paper gives an abstract order-type existence theorem for second order nonlocal boundary value problems at resonance and obtain existence criteria for at least two positive solutions, where $f$ is a continuous function. Our results generalize or extend related results in the literature and give a positive answer to the question raised in the literature. An example is given to illustr...
متن کاملFractional Action-like Variational Problems *
Fractional action-like variational problems have recently gained importance in studying dynamics of nonconservative systems. In this note we address multi-dimensional fractional action-like problems of the calculus of variations. 2000 Mathematics Subject Classification: 49K10, 49S05.
متن کاملDiscrete-time fractional variational problems
We introduce a discrete-time fractional calculus of variations on the time scale hZ, h > 0. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that solutions to the considered fractional problems become the classical discrete-time solutions when the fractional order of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Physics
سال: 2013
ISSN: 2391-5471
DOI: 10.2478/s11534-013-0208-2